Amyloid Core Formed of Full-Length Recombinant Mouse Prion Protein Involves Sequence 127–143 but Not Sequence 107–126

نویسندگان

  • Biswanath Chatterjee
  • Chung-Yu Lee
  • Chen Lin
  • Eric H.-L. Chen
  • Chao-Li Huang
  • Chien-Chih Yang
  • Rita P.-Y. Chen
چکیده

The principal event underlying the development of prion disease is the conversion of soluble cellular prion protein (PrP(C)) into its disease-causing isoform, PrP(Sc). This conversion is associated with a marked change in secondary structure from predominantly α-helical to a high β-sheet content, ultimately leading to the formation of aggregates consisting of ordered fibrillar assemblies referred to as amyloid. In vitro, recombinant prion proteins and short prion peptides from various species have been shown to form amyloid under various conditions and it has been proposed that, theoretically, any protein and peptide could form amyloid under appropriate conditions. To identify the peptide segment involved in the amyloid core formed from recombinant full-length mouse prion protein mPrP(23-230), we carried out seed-induced amyloid formation from recombinant prion protein in the presence of seeds generated from the short prion peptides mPrP(107-143), mPrP(107-126), and mPrP(127-143). Our results showed that the amyloid fibrils formed from mPrP(107-143) and mPrP(127-143), but not those formed from mPrP(107-126), were able to seed the amyloidogenesis of mPrP(23-230), showing that the segment residing in sequence 127-143 was used to form the amyloid core in the fibrillization of mPrP(23-230).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of Full-Length Core Protein of Hepatitis C Virus by Escherichia coli Cultivated in Stirred Tank Fermentor

The mature core protein of the Hepatitis C virus (HCVC173) carrying pelB as a signal peptide (PelB::core) was overexpressed in Escherichia coli as 18% and 23.3% of the host’s total protein, in flask and fermentor cultivation, respectively. A final specific yield of 25 ± 1 mg HCVC173/g dry cell weight and an overallproductivity of 51±1 mg HCVC173/l/h were obtained in the stirred-tank ferme...

متن کامل

Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry.

A molecular understanding of prion diseases requires an understanding of the mechanism of amyloid fibril formation by the prion protein. In particular, it is necessary to define the sequence of the structural events describing the conformational conversion of monomeric PrP to aggregated PrP. In this study, the sequence of the structural events in the case of amyloid fibril formation by recombin...

متن کامل

NMR-detected hydrogen exchange and molecular dynamics simulations provide structural insight into fibril formation of prion protein fragment 106-126.

PrP106-126, a peptide corresponding to residues 107-127 of the human prion protein, induces neuronal cell death by apoptosis and causes proliferation and hypertrophy of glia, reproducing the main neuropathological features of prion-related transmissible spongiform encephalopathies, such as bovine spongiform encephalopathy and Creutzfeldt-Jakob disease. Although PrP106-126 has been shown to form...

متن کامل

Generic amyloidogenicity of mammalian prion proteins from species susceptible and resistant to prions

Prion diseases are lethal, infectious diseases associated with prion protein (PrP) misfolding. A large number of mammals are susceptible to both sporadic and acquired prion diseases. Although PrP is highly conserved and ubiquitously expressed in all mammals, not all species exhibit prion disease. By employing full length recombinant PrP from five known prion susceptible species (human, cattle, ...

متن کامل

Molecular Structure of Amyloid Fibrils Controls the Relationship between Fibrillar Size and Toxicity

BACKGROUND According to the prevailing view, soluble oligomers or small fibrillar fragments are considered to be the most toxic species in prion diseases. To test this hypothesis, two conformationally different amyloid states were produced from the same highly pure recombinant full-length prion protein (rPrP). The cytotoxic potential of intact fibrils and fibrillar fragments generated by sonica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013